Stage 1: Desired Results

Established Goals: (Standards)

CS.DS1. Display a sense of wonder and delight about the natural universe and its beauty.

CS.DS2. Share concern and care for the environment as a part of God’s creation.

CS.IS2. Describe the relationship, elements, underlying order, harmony, and meaning in God’s creation.

MS-ESS2-4 Develop a model to describe the cycling of water through Earth’s system driven by energy from the sun and the force of gravity.

Understandings:

- Students will understand the order, relationship, harmony and interrelatedness of all the elements involved in the water cycle.
- Students will understand how God manifests Himself through an ordered creation and how He provides for mankind.
- Students will delight in and appreciate the beauty and goodness of water as a resource to sustain life.

Essential Questions:

- Why do we find water beautiful and delightful?
- How does the water cycle sustain the earth?
- What are some possible effects of a damaged water cycle?
- Who is responsible for the environment?
- How can we be good stewards of God’s ordered creation?

<table>
<thead>
<tr>
<th>Students will know….</th>
<th>Students will be able to…</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students will be able to describe the order and relationship of all the elements of the water cycle and how this system is representative of God’s orderliness and care of creation.</td>
<td>Students will be able to create a conceptual or physical model of the cycling of water through the earth’s systems driven by the sun’s energy and gravitational force.</td>
</tr>
</tbody>
</table>
Students will be able to share concern and care of the environment as a part of God’s creation.

Stage 2: Assessment Evidence

<table>
<thead>
<tr>
<th>Performance Task(s):</th>
<th>Other Evidence:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students will be able to create a conceptual or physical model of the water cycle demonstrating how water changes its form when propelled by sunlight and gravity. Physical models may be constructed using found or recycled materials. Conceptual models must fully describe the process of water changing its state as it moves through the hydrologic cycle focusing on the effects of gravity and heat sources. Models may be constructed collaboratively by a small group or by an individual student.</td>
<td>Formative assessments: informal observation (pair/share activity); science journal entries with vocabulary and drawings. Quizzes. Exit slips. Completion of formative rubric for conceptual or physical model of water cycle.</td>
</tr>
<tr>
<td>Commitment, as a class, to The Water Project or other project to reduce waste and conserve water.</td>
<td>Summative: Scoring rubric for conceptual for physical model of the water (hydrologic) cycle. Test (to include assessment of NGSS evidence for understanding of MS-ESS2-4: Connections.)</td>
</tr>
<tr>
<td>Stage 3: Learning Plan</td>
<td>Writing activity with scoring rubric: Students will explain the necessity of the water cycle and clean water and how it relates to God’s goodness and wisdom in His plan for humanity.</td>
</tr>
<tr>
<td>Learning Activities: Selected (See NOTE at end of Stage 3: Learning Plan).</td>
<td></td>
</tr>
<tr>
<td>Day 1 - 2:</td>
<td></td>
</tr>
<tr>
<td>Discussion of the Care for Creation: Who is responsible for caring for creation? Has God simply left us as stewards or is He still involved? Why is care for our earth a requirement of the Catholic faith? How does caring for our environment show our care for God and our fellow man? How is man connected to his environment?</td>
<td></td>
</tr>
<tr>
<td>Students will have individual time to reflect on one (or all) of these questions and to answer them in their science journal prior to discussion.</td>
<td></td>
</tr>
<tr>
<td>Resources:</td>
<td></td>
</tr>
</tbody>
</table>
| USCCB. *Care for Creation*
Day 2:
Continuation of discussion from Day 1: Why do we find water beautiful and delightful? Why are we attracted to it? Why do we like to feel it, hear it? Why do we find water good? Why do we associate water with purity? How has man's actions impacted the water cycle on a global level?
What can we do to help those who do not have access to clean drinking water?

Working with partners, students will perform a search and find using their tablets, computers, and/or dictionaries or art materials to design a poster, digital presentation, or the teacher might have students write an essay bringing awareness of ways that we can help to care for God's creation incorporating X(number) of vocabulary words.
Define vocabulary words for the unit and record them in a science journal. Use Pair/Share for each student to state the word and then the definition.

Resource suggestions:
Educating to Truth, Beauty, and Goodness. Use some of the questions provided under the headings to develop focused questions about water and its nature.
https://cardinalnewmansociety.org/catholic-curriculum-standards/appendix-a/

Day 3-4:
Teacher will demonstrate examples of ways that water can be purified (boiling, creating a purifying filter system, activated carbon filters, iodine, straining). Students will research and identify an area on the globe that has limited access to clean water and examine the climate and its impact on the water cycle.

Teacher will perform The Rainmaker experiment to show evaporation, condensation, water vapor, humidity, and precipitation asking students questions such as what causes each of these things. Can they work out of order? Why not?
The students will transfer this process to the earth’s natural process using vocabulary from word list and discussing the inter-relationship between each process.
How does this process reveal God’s graciousness, presence, and transcendence?
How does this water cycle fulfill all that God foresaw for man?

Students will begin a writing assignment explaining the necessity of clean water and how it fulfills one way that God, in His graciousness and wisdom, provides for mankind.

The Rainmaker
https://thewaterproject.org/resources/lesson-plans/rainmaker-experiment

Day 5:
Introduce *The Water Project, Inc.* or some other organization that assists with providing clean water, whether locally or globally. Review 10 ways clean water can change the world.
Inspire students to initiate a commitment to reduce their waste of water (e.g. eliminating long showers, identifying and stopping running toilets, using a nozzle on a hose, and so forth). Have students write a paragraph on how they can be good stewards of God’s creation.

Suggested Resources:
To find charities involved in water conservation: The Charity Navigator
https://www.charitynavigator.org/index.cfm?keyword_list=water&bay=search.results
The Water Project
https://thewaterproject.org/why-water/10-ways-clean-water-changes-the-world

Day 6:
Watch *The Blue Planet* https://www.youtube.com/watch?v=WBRXJvDk4dQ or similar video discussing the necessity of water for life on the earth.

Students will design a mini water cycle with gathered materials such as large bowls, tin cans, water, and plastic wrap.
Hypothesize how the moisture in a cloud finally falls to the ground as precipitation.
How does the water cycle process bring water to different parts of the earth? What happens if we use Kool-Aid for water?
How do the three phases of water (liquid, gaseous, and frozen) tie together with the Earth's climate system effecting clouds, oceans, vegetation, snow pack and glaciers?
Hypothesize what would happen to the water cycle in the absence of the sun and/or gravity.
Analyze how changes in the water cycle effect weather and climate.

Student research questions:
What effect does smoke from factories and exhaust from cars have on water vapor and air?
Discussion of Acid Rain. Can the earth filter some of the toxins?
Review discussion on how pollution destroys the delight and joy we feel at the beauty of water. How does the lack of fresh water affect us?

Make a Mini water cycle
https://thewaterproject.org/resources/lesson-plans/create-a-mini-water-cycle

Day 7-9 (or as needed)
In groups, students will create a conceptual or physical model of the water cycle showing the relationships and connections between the different phases of the cycle, the Earth’s surface, and the atmosphere (See rubrics below). *(Presentation of projects can be added to include speaking and listening standards.)*

Additional Lesson plans and student Resources:
NASA https://pmm.nasa.gov/education/subtopics/hydrologic-cycle
USGS https://water.usgs.gov/edu/waterproperties.html
NOAA http://www.noaa.gov/resource-collections/water-cycle
The Water Project https://thewaterproject.org/resources/the_water_cycle

NOTE: It is recommended that one or two of the lessons be discussion days where all participants are invited to focus on the value and nature of water and its cycle so as to develop deeper appreciation for the essence and gift of this system to mankind (See Day 1 and Day 2).
Vocabulary and Definitions:

Water (Hydrologic) cycle: The continuous process by which water is circulated throughout the earth and the atmosphere through evaporation, condensation, precipitation, and the transpiration of plants and animals.

Ground water: Water that has seeped into the ground.

Runoff: Water that “runs off” the land’s surface and moves according to gravity.

Water vapor: Water in a gas form.

Humidity: The amount of water vapor in the air.

Evaporation: An invisible process that changes liquid and frozen water into water-vapor gas that floats up into the sky to become clouds.

Condensation: Water vapor turning back into liquid form or ice.

Precipitation: The amount of water that falls to the earth in the form of rain, snow, or hail.

Transpiration: Water that is released by plants.

Hydrosphere: The water on or surrounding the surface of the globe, including the water of the oceans and the water in the atmosphere.

Atmosphere: The layer of gas that surrounds the Earth.

Gravity: The force that attracts a body toward the center of the Earth, or toward any other physical body having mass.

Pollution: The presence in or introduction into the environment of a substance or thing that has harmful or poisonous effects.

Acid rain: Rain that has been made acidic by certain pollutants in the air.

Resources:
- Large bowls
- Tin cans
- Water
- Computers/tablets/dictionaries
- Projector for video
- Worksheet
- Materials to create water cycle model
Theology – Excerpts from *Laudato Si!*
Writing
Speaking and Listening
Water Cycle Vocabulary Worksheet*

1. Water (Hydrologic) Cycle:

2. Ground water

3. Runoff

4. Water vapor

5. Humidity

6. Evaporation

7. Condensation

8. Precipitation

9. Transpiration

10. Hydrosphere

11. Atmosphere

12. Gravity

13. Pollution

14. Acid Rain
Performance Checklist for Water (Hydrologic) Cycle Model (formative)

<table>
<thead>
<tr>
<th>Performance Criteria</th>
<th>Self</th>
<th>Teacher</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Written plans/diagrams of the model were developed, reviewed, and revised before constructing the actual physical model.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. A written narrative accompanies the model to 1) present an overview of the model and 2) to explain the relationships* (see below) between each stage and 3) how the cycle exemplifies God’s orderliness.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. All parts of the water cycle are properly labeled.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Vocabulary words used.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. The model has been constructed with care and attention to detail.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Features are added to enhance the model - color, texture, additional components, etc.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Relationships (from NGSS MS-ESS2-4 Evidence Statement)¹

- Energy transfer from the sun warms the Earth, which can evaporate into the atmosphere.
- Water vapor in the atmosphere forms clouds, which can cool and condense to produce precipitation that falls to the surface of Earth.
- Gravity causes water on land to move downhill (e.g., rivers and glaciers) and much of it eventually flows into oceans.
- Some liquid and solid water remains on land in the form of bodies of water and ice sheets.
- Some water remains in the tissues of plants and other living organisms, and this water is released when the tissues decompose.

Grading Rubric for Water (Hydrologic) Cycle Model (summative)

<table>
<thead>
<tr>
<th>Performance Criteria</th>
<th>Achieved</th>
<th>Developing</th>
<th>Beginning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Written plans/diagrams of the model were developed, reviewed, and revised before constructing the actual physical model.</td>
<td>Detailed written plans/diagrams were created of the model with several renditions indicating improvements. 8 - 10 pts.</td>
<td>Written plans/diagrams were created of the model with minor changes for improvement. 5 - 7 pts.</td>
<td>Sketch plans/diagrams were created of the model with little modification to original design. 0 - 4 pts.</td>
</tr>
<tr>
<td>2. A written narrative accompanies the model to explain what the model represents.</td>
<td>Detailed written narrative provides 1) an overview of the water cycle, 2) addresses the interdependency of each stage and 3) how the cycle exemplifies God’s orderliness of creation. 20 - 25 pts.</td>
<td>Written narrative provides basic explanation of overview, addresses most interdependency of water cycle and includes a limited explanation of how the cycle exemplifies God’s orderliness of creation. 15 - 19 pts.</td>
<td>Written narrative lacks complete detail of water cycle or lacks complete explanation of interdependency of water cycle, or lacks reasonable explanation of God’s orderliness of creation. One, or more of the three components is/are missing. 0 - 14 pts.</td>
</tr>
<tr>
<td>3. All parts of the water cycle are properly labeled.</td>
<td>All parts of the water cycle are labeled correctly and provide brief definitions. 18 - 20 pts.</td>
<td>All parts of the water cycle are labeled. 15 - 17 pts.</td>
<td>Most parts of the water cycle are labeled with a few missing components. 0 - 14 pts.</td>
</tr>
<tr>
<td>4. Vocabulary words used.</td>
<td>All vocabulary words used. 4-5 pts.</td>
<td>All but one or two vocabulary words used. 2-3 pts.</td>
<td>Three or more missing vocabulary words. 0-1 pt.</td>
</tr>
<tr>
<td>5. The model has been constructed with care and attention to detail.</td>
<td>No stray marks are visible. All components adhere properly. All coloring is complete. 18 - 20 pts.</td>
<td>A few stray markings or unattached components. All coloring is essentially complete. 15 - 17 pts.</td>
<td>Model is falling apart, or appears created at the last minute. 0 - 14 pts.</td>
</tr>
<tr>
<td>6. Features are added to enhance the model - color, texture, additional components, etc.</td>
<td>Numerous additional features are added to the water cycle beyond those presented in the vocabulary word list. Originality is</td>
<td>All features of water cycle are present with one or two additional features added to enhance the model beyond the vocabulary word list. Some stray</td>
<td>No additional features are included to enhance the model. Basic components are missing or not aligned properly. Numerous stray markings, lacks color and/or no originality.</td>
</tr>
<tr>
<td></td>
<td>evident. No stray markings. Has professional appearance. 18 - 20 pts.</td>
<td>markings and/or incomplete parts, but overall exemplifies the water cycle. 15 - 17 pts.</td>
<td>0 - 14 pts.</td>
</tr>
<tr>
<td>---------------------</td>
<td>---</td>
<td>--</td>
<td>-------------</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Checklist for Science Journal or Discussion Points – Formative Assessment

<table>
<thead>
<tr>
<th>Student Name:</th>
<th>Discussion Points (list below)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Care of Creation: Who is responsible for caring for creation? Has God simply left us as stewards or is He still involved? Use checks or tally marks to indicate understanding.</td>
<td>God does not abandon His people. He is always present to them.</td>
</tr>
<tr>
<td>God holds all things in existence.</td>
<td>God is greater than His works. First Cause.</td>
</tr>
<tr>
<td>God cooperates with His creatures.</td>
<td>God grants dignity to His creatures.</td>
</tr>
<tr>
<td>God places man above all creation.</td>
<td>Other points</td>
</tr>
<tr>
<td>Why is care of our earth a requirement of the Catholic faith? How does caring for our environment show our care for God and our fellow man? How is man connected to his environment? Use checks or tally marks to indicate understanding.</td>
<td>Everything is connected. Symbiotic relationships.</td>
</tr>
<tr>
<td>All creation is from God.</td>
<td>All creation is God’s gift to all mankind.</td>
</tr>
<tr>
<td>What we do now to the environment affects future generations.</td>
<td>Man’s consumeristic mentality. Need for replenishment and rest.</td>
</tr>
<tr>
<td>Need for discipline of ecological transformation of earth’s resources.</td>
<td>Other points</td>
</tr>
<tr>
<td>Why do we find water beautiful and delightful? Why are we attracted to it? Why do we like to feel it, hear it? Why do we find water good? Why do we associate water with purity? What is the value, purpose, and nature of water? Use checks or tally marks to indicate understanding.</td>
<td>Discussion Points</td>
</tr>
</tbody>
</table>

2 Please see D. Donohue’s article in the Catholic Curriculum Standards (2016), Appendix B for a discussion on assessing non-cognitive standards.
The Earth is made up of water. (71% of the earth’s surface is water.)

Man is composed of water. (50 – 75% depending on age.)

Water is soothing on the skin. It cleans as it flows.

The sound of water is acceptable to the ear (e.g., trickling water, flowing water, rushing water).

Water has no taste and is absorbed well into our digestive system.

Water has a radiance, brilliance. It attracts the eye.

Water is essential for our life and the lives of all living things. It has tremendous value.

Other points

<table>
<thead>
<tr>
<th>How have man’s actions impacted the water cycle on a global level? What can we do to help those who do not have access to clean water?</th>
<th>Discussion Points (list below)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use checks or tally marks to indicate understanding.</td>
<td>Man-made pollutants entering the air, water, or earth, if left unfiltered, harms all living things.</td>
</tr>
<tr>
<td></td>
<td>Be mindful of toxins let out into the environment.</td>
</tr>
<tr>
<td></td>
<td>Not waste water unnecessarily.</td>
</tr>
<tr>
<td></td>
<td>Give water to the thirsty. (Individually or through organizations, projects.)</td>
</tr>
<tr>
<td></td>
<td>Other points</td>
</tr>
</tbody>
</table>
MS-ESS2-4 Connections

Students use the model to account for both energy from light and the force of gravity driving water cycling between oceans, the atmosphere, and land, including that:

- Energy from the sun drives the movement of water from the Earth (e.g., oceans, landforms, plants) into the atmosphere through transpiration and evaporation.
- Water vapor in the atmosphere can cool and condense to form rain or crystallize to form snow or ice, which returns to Earth when pulled down by gravity.
- Some rain falls back into the ocean, and some rain falls on land. Water that falls on land can:
 1. Be pulled down by gravity to form surface waters such as rivers, which join together and generally flow back into the ocean.
 2. Evaporate back into the atmosphere.
 3. Be taken up by plants, which release it through transpiration and also eventually through decomposition.
 4. Be taken up by animals, which release it through respiration and also eventually through decomposition.
 5. Freeze (crystallize) and/or collect in frozen form, in some cases forming glaciers or ice sheets.
 6. Be stored on land in bodies of water or below ground in aquifers.

Students use the model to describe that the transfer of energy between water and its environment drives the phase changes that drive water cycling through evaporation, transpiration, condensation, crystallization, and precipitation. Students use the model to describe how gravity interacts with water in different phases and locations to drive water cycling between the Earth’s surface and the atmosphere.

Acknowledgements: Thank you to Samantha Barry, Celeste Donner, Celeste Jay, Angela Johnson, Jenna Schafer and Darlene Turner from the Diocese of Joliet for their initial lesson/unit plan and to Mary Ann Draudt – Diocese of Joliet, IL; Therese Edwards – Diocese of Lansing, MI and Vicki Parks - Diocese of Venice for reviewing and offering suggestions on the final unit plan.